Qualitative and Pharmacological Evaluation of Root Extracts of *Withania somnifera* against Human and Plant Pathogens

Dr. Premlata Singariya*, Prof. Padma Kumar¹ and Dr. Krishan Kumar Mourya²

¹Dr. D.S. Kothari Post Doctoral Fellow, Laboratory of Tissue Culture and Secondary Metabolites, Department of Botany, University of Rajasthan, Jaipur- 302004.

²Veterinary Officer and In-Charge, I Grad. Govt. Veterinary Hospital, Pahari (Bharatpur) Rajasthan.

*Corresponding Author E-mail: premlatasingariya@gmail.com

ABSTRACT:
AIMS: The aim of present study is to investigate the antimicrobial activity of root extracts of *Withania somnifera*, in order to use it as a possible source for new antimicrobial substances against important human and plant pathogens.

SETTINGS AND DESIGN: The roots of *Withania somnifera* were evaluated against medically important bacteria viz. *Proteus mirabilis, Klebsiella pneumoniae, Agerobacterium tumefaciens* (plant pathogen) and one fungus *Aspergillus niger*.

METHODS AND MATERIAL: The dried and powdered roots of *W. somnifera* were successively extracted with a series of non polar to polar solvents using soxhlet assembly. The antimicrobial assay was done by both disc diffusion and serial dilution methods.

RESULTS: Glacial acetic acid extract and benzene extract of *W. somnifera* show highest activity against *A. tumefaciens* (plant pathogen) to varying degrees, by most of the extracts.

KEYWORDS: *Agerobacterium tumefaciens*, antibacterial, antifungal, *Aspergillus niger*, *Klebsiella pneumoniae* and *Proteus mirabilis*.

KEY MESSAGE: The present investigation provides a scientific basis for the use of these plant extracts in home-made remedies and their possible application against micro-organisms.

INTRODUCTION:
Most of the herbal medicines in use await validation of their claimed effects and possibly the development of novel antimicrobial drugs from them.¹ Natural plants derived compounds contribute a lot in fight against pathogens. Various plant extracts have also been examined for their antibacterial activity with the objective of exploring environmentally safe alternatives of plant disease control.²

Withania somnifera (solanacae) are gaining attention in various field of research, as they are best suited to the present environmental conditions. *W. somnifera* used for its anti-inflammatory effect³, analgesic effect⁴, Antioxidant⁵, memory-improving effects.⁶ It shows relaxant and antispasmodic effects against several plasmogens on intestinal, uterine, blood vascular, bronchial and tracheal muscles. Withanolides possess remarkable antibacterial, anti-arthritic and immunosuppressive. The anti tumor and radio sensitizing effects of *W. somnifera* have been studied.⁷

Aspergillus niger is a causative agent of aspergillosis. It also reported to cause endocarditis after heart surgery and infection of exenterated orbit even in immunocompetent patients.⁸ *Klebsiella* is the genus name for one of these bacteria found in the respiratory, intestinal, and urinogenital tracts of animals and man. When *Klebsiella* bacteria get outside of the gut, however, serious infection can occur. *K. pneumonia* more frequently causes lung destruction and pockets of pus in the lung (known as abscesses). The mortality rate for untreated cases is around 90%. There may also be pus surrounding the lung (known as empyema), respiratory infections, such as bronchitis, which is usually a hospital-acquired infection.⁹ *P. mirabilis* is a rod shaped bacterium causes obstruction and renal failure. It can also cause wound infections, septicemia and pneumonias, mostly in hospitalized patients. *A. tumefaciens* (Plant pathogen) use horizontal gene transfer to cause tumors “crown gall disease” in plants. It can be responsible for opportunistic infections in humans with weakened immune syroots.¹⁰
MATERIAL AND METHOD:
Experimental design:
Crude extracts of root of *W. somnifera* were prepared with a series of non polar to polar solvents by hot extraction method in soxhlet assembly. Different extracts were then screened for antimicrobial activity by disc diffusion assay against a few medically important bacteria, plant pathogen and fungi. The fraction showing best activity was then used for determination of MIC by tube dilution method and minimum bactericidal/fungicidal concentration (MBC/MFC).

Collection of plant material:
Roots of *W. somnifera* (RUBL-20668) were collected in the month of January from Jaipur district of Rajasthan. Plants samples were identified and deposited in the herbarium, department of botany, university of Rajasthan, Jaipur. The collected plant materials were separately shade dried for one week. Shade dried roots were powdered with the help of grinder. Fine powder of roots was stored in clean container to be used for Soxhlet extraction following the method of Subramanian and Nagajaran in different polar solvents selected.

Extraction procedure:
Roots (10 gm) were sequentially extracted with different solvents (250 ml) according to their increasing polarity (hexane < petroleum ether < toluene < benzene < iso propyl alcohol < chloroform < ethyl acetate < acetone < ethanol < glacial acetic acid < water) by using Soxhlet apparatus for 18 hours at a temperature not exceeding the boiling point of the respective solvent. The obtained extracts were filtered by using Whatman No. 1 filter paper and then concentrated at 40°C by using an evaporator. The residual extracts were stored in refrigerator at 4°C in small and sterile glass bottles. Percent extractive values were calculated by the following formula (table-3).

\[
\text{Percent Extracts} = \frac{\text{Weight of dried extract}}{\text{Weight of dried plant material}} \times 100
\]

Micro-organisms:
The organisms used in this study were three Gram-negative bacteria and one fungus. *Proteus mirabilis* (MTCC-3310), *Klebsiella pneumoniae* (MTCC-4030), *Agerobacterium tumefaciens* (MTCC-431), *Aspergillus niger* (MTCC-282).

Test pathogenic microorganisms were procured from Microbial Type Culture Collection, IMTECH, Chandigarh, India. The reference strains of bacteria were maintained on nutrient agar slants, sub cultured regularly (after every 30 days) and stored at 4°C as well as at –80°C by preparing suspensions in 10% glycerol.

Screening for antimicrobial activity:
Bacterial strains were grown and maintained on Nutrient Agar medium, while fungi were maintained on Sabouraud Dextrose Agar medium (SDA). Disc diffusion assay (DDA) was performed for screening. NA and SDA base plates were seeded with the bacterial and fungal inoculum, respectively (inoculum size 1×10⁶ CFU/ml for bacteria and 1×10⁵ cell/ml for fungi). Sterile filters paper discs (Whatman no. 1, 5mm in diameter) were impregnated with 100 µl of each of the extracts (100 mg/ml) to give a final concentration of 1 mg/disc and left to dry in vaccuo so as to remove residual solvent, which might interfere with the determination. Petri plates were pre-seeded with 15 ml of growth agar medium and 1.0 ml of inoculum. Extract discs were then placed on the seeded agar plates. Each extract was tested in triplicate with gentamycin (10mcg/disc) and ketoconazole (10mcg/disc) as standard for bacteria and fungi, respectively. The plates were kept at 4°C for 1 h for diffusion of extract, thereafter were incubated at 37°C for bacteria (24 h) and 27°C for fungi (48 h). The inhibition zones were measured and compared with the standard reference antibiotics. AI for each extract was calculated (Table 1).

Activity index (AI) = \frac{\text{Inhibition Zone of the sample}}{\text{Inhibition Zone of the standard}}

Broth dilution method:
Minimum inhibitory concentration (MIC) was determined for each plant extract showing antimicrobial activity against test pathogens. To measure the MIC values, various concentrations of the stock, 15, 7.5, 3.75, 1.875, 0.938, 0.469, 0.234, 0.117, 0.059, 0.029 mg/ml were assayed against the test pathogens. Plant extracts were re-suspended in acetone (which has no activity against test microorganisms) to make 15mg/ml final concentration and then two fold serially diluted; 1 ml of each extract was added to test tubes containing 1 ml of sterile NA media (for bacteria) and SDA (for fungi). The tubes were then inoculated with standard size of microbial suspension (for bacteria 1×10⁶ CFU/ml and 1×10⁵ cell/ml for fungi) and the tubes were incubated at 37°C for 24 h for bacteria and 28°C for 48 h for fungi in a BOD incubator and observed for change in turbidity after 24 h compared with the growth and in controls. A tube containing nutrient broth and inoculum but no extract was taken as control. The least extract concentration which inhibited the growth of the test organisms was taken as MIC. Bacterial and fungal suspensions were used as negative control, while broth containing standard drug was used as positive control. Each extract was assayed in duplicate and each time two sets of tubes were prepared, one was kept for incubation while another set was kept at 4°C for comparing the turbidity in the test tubes. The MIC values were taken as the lowest concentration of the extracts in the test tubes that showed no turbidity after incubation. The turbidity of the test tube was interpreted as visible growth of microorganisms.

Determination of Minimum bactericidal/fungicidal concentration (MBC/MFC):
Equal volume of the various concentration of each extract and nutrient broth mixed in micro-tubes to make up 0.5ml of solution. 0.5ml of McFarland standard of the organism...
suspension was added to each tube. The tubes were incubated aerobically at 37°C for 24 h for bacteria and 28°C for 48 h for fungi. Two control tubes were maintained for each test batch. These include tube-containing extract without inoculum and the tube containing the growth medium and inoculum. The MBC was determined by sub culturing the test dilution on Mueller Hinton Agar and further incubated for 24 h. The highest dilution that yielded no single bacterial colony was taken as the Minimum Bactericidal Concentration. MBC was calculated for some of the extracts showed high antimicrobial activity against highly sensitive organisms. The tubes were incubated aerobically at 37°C for 24 h for bacteria and 28°C for 48 h for fungi. Two control tubes were maintained for each test batch. These include tube-containing extract without inoculum and the tube containing the growth medium and inoculum. The MBC was determined by sub culturing the test dilution on Mueller Hinton Agar and further incubated for 24 h. The highest dilution that yielded no single bacterial colony was taken as the Minimum Bactericidal Concentration. MBC was calculated for some of the extracts showed high antimicrobial activity against highly sensitive organisms.

Total activity (TA) determination:
Total activity is the volume at which the test extract can be diluted with the ability to kill microorganisms. It is calculated by dividing the amount of extract from 1 g plant material by the MIC of the same extract or compound isolated and is expressed in ml/g.

\[
\text{Total Activity} = \frac{\text{Extract per gram dried plant part}}{\text{MIC of extract}}
\]

Table 1: Zone of Inhibition and Activity index (AI) for root extracts of *W. somnifera*

<table>
<thead>
<tr>
<th>Polar Solvent</th>
<th>Bio-activity of Root extracts of Withania somnifera against pathogens</th>
<th>Proteus merabilis</th>
<th>Klebsiella pneumoniae</th>
<th>Aerobacterium tumefaciens</th>
<th>Aspergillus niger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ZOI</td>
<td>AI</td>
<td>ZOI</td>
<td>AI</td>
<td>ZOI</td>
</tr>
<tr>
<td>W</td>
<td>12.33±0.25</td>
<td>1.233</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AA</td>
<td>8.17±0.22</td>
<td>0.817</td>
<td>-</td>
<td>-</td>
<td>35.67±0.29</td>
</tr>
<tr>
<td>E</td>
<td>7.50±0.65</td>
<td>0.751</td>
<td>-</td>
<td>-</td>
<td>13.17±0.21</td>
</tr>
<tr>
<td>C</td>
<td>11.50±0.65</td>
<td>0.575</td>
<td>8.33±0.23</td>
<td>0.417</td>
<td>-</td>
</tr>
<tr>
<td>EA</td>
<td>8.67±0.22</td>
<td>0.434</td>
<td>16.17±0.23</td>
<td>0.809</td>
<td>-</td>
</tr>
<tr>
<td>T</td>
<td>7.17±0.22</td>
<td>0.359</td>
<td>9.33±0.24</td>
<td>0.467</td>
<td>-</td>
</tr>
<tr>
<td>PE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.17±0.26</td>
</tr>
</tbody>
</table>

Table 2: MIC and MBC/MFC of root extracts of *W. somnifera*

<table>
<thead>
<tr>
<th>Polar Solvent</th>
<th>Bio-activity of Root extracts of Withania somnifera</th>
<th>Proteus merabilis</th>
<th>Klebsiella pneumoniae</th>
<th>Aerobacterium tumefaciens</th>
<th>Aspergillus niger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC</td>
<td>MBC</td>
<td>MIC</td>
<td>MBC</td>
<td>MIC</td>
</tr>
<tr>
<td>W</td>
<td>1.875</td>
<td>1.875</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AA</td>
<td>7.5</td>
<td>7.5</td>
<td>-</td>
<td>-</td>
<td>0.234</td>
</tr>
<tr>
<td>E</td>
<td>7.5</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>1.875</td>
</tr>
<tr>
<td>A</td>
<td>15</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>1.875</td>
</tr>
<tr>
<td>C</td>
<td>3.75</td>
<td>3.75</td>
<td>7.5</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>IP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.75</td>
</tr>
<tr>
<td>B</td>
<td>7.5</td>
<td>15</td>
<td>0.938</td>
<td>0.938</td>
<td>-</td>
</tr>
<tr>
<td>T</td>
<td>15</td>
<td>15</td>
<td>3.75</td>
<td>3.75</td>
<td>-</td>
</tr>
<tr>
<td>PE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Table 3: Phytochemical estimation and Total activity of root extracts of *W. somnifera*

<table>
<thead>
<tr>
<th>Polar Solvent</th>
<th>Yield (%)</th>
<th>Color</th>
<th>Consistency</th>
<th>Total activity of Root extracts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P. m.</td>
</tr>
<tr>
<td>W</td>
<td>9.29</td>
<td>Pale brown</td>
<td>Non-sticky</td>
<td>49.53</td>
</tr>
<tr>
<td>AA</td>
<td>22.97</td>
<td>Brick red</td>
<td>Sticky</td>
<td>30.63</td>
</tr>
<tr>
<td>E</td>
<td>8.48</td>
<td>Brown</td>
<td>Sticky</td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>1.42</td>
<td>Light brown</td>
<td>Non-sticky</td>
<td>1.89</td>
</tr>
<tr>
<td>EA</td>
<td>1.41</td>
<td>Brown</td>
<td>Non-sticky</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>6.67</td>
<td>Dark brown</td>
<td>Non-sticky</td>
<td>-</td>
</tr>
<tr>
<td>IP</td>
<td>2.41</td>
<td>Brown</td>
<td>Sticky</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>1.56</td>
<td>Green</td>
<td>Sticky</td>
<td>-</td>
</tr>
<tr>
<td>T</td>
<td>1.31</td>
<td>Brown</td>
<td>Sticky</td>
<td>-</td>
</tr>
<tr>
<td>PE</td>
<td>2.49</td>
<td>Brown</td>
<td>Non-sticky</td>
<td>-</td>
</tr>
<tr>
<td>H</td>
<td>1.57</td>
<td>Brown</td>
<td>Non-sticky</td>
<td>-</td>
</tr>
</tbody>
</table>

RESULTS:

1. Antimicrobial activity:
Antimicrobial activity (assessed in terms of zone of inhibition in mm* and activity index) of the roots of Withania somnifera extracts in different polar solvents, tested against selected microorganisms were recorded (Table 1). In the present study total eleven extracts of selected plant were tested for their bioactivity, among which ten extracts showed significant antimicrobial potential against test microbes. Most susceptible organisms in the investigation were A. tumefaciens and P. merabilis against which, most of the plant extracts showed inhibition zone.

(a) Antibacterial activity: Highest antibacterial activity was recorded for glacial acetic acid extract (ZOI-35.67±0.29 and AI-1.784) and benzene (ZOI-16.17±0.23 and AI-0.809) against A. tumefaciens followed by acetone extract (ZOI-13.17±0.21 and AI-0.659) against the same.

(b) Antifungal activity: Highest antifungal activity was recorded for glacial acetic acid extract (ZOI-8.17±0.21 and AI-0.545) against A. niger.

Abbreviations:
All values are mean ± SD, n-3, ZOI-Zone of Inhibition (mm±S.D.), AI-Activity index, H-hexane, PE-petroleum ether, T-toluene, B-benzene, IP-iso propyl alcohol, C-chloroform, EA-ethyl acetate, A-acetone, E-ethanol, AA-glacial acetic acid, W-water.

2. MIC and MBC/MFC:
MIC and MBC/MFC values were evaluated for those extracts, which were showing activity in diffusion assay. The range of MIC and MBC/MFC of extracts recorded was 0.234-15 mg/ml. In the present investigation lowest MIC value 0.234 mg/ml was recorded for glacial acetic acid extract against A. tumefaciens and followed by 0.938 mg/ml for benzene extract against the same indicating significant antimicrobial potential of test extracts. MIC and MBC/MFC values were found equal show bactericidal and fungicidal activity (table 2).

MIC-Minimum inhibitory concentration (mg/ml), MBC-Minimum bactericidal concentration (mg/ml), MFC-Minimum fungicidal concentration (mg/ml), H-hexane, PE-petroleum ether, T-toluene, B-benzene, IP-iso propyl alcohol, C-chloroform, EA-ethyl acetate, A-acetone, E-ethanol, AA-glacial acetic acid, W-water.

3. Total activity:
Total activity indicates the volume at which extract can be diluted with still having ability to kill microorganism. Glacial acetic acid extracts showed high values of TA against A. tumefaciens and A. niger which prove the potential to inhibit the growth of the test microorganisms, even at low concentration. Maximum TA value was recorded for glacial acetic acid extracts 981.62 ml and 421.73 mg/ml against A. tumefaciens and A. niger respectively (table 3).

4. Qualitative and quantitative estimation:
The preliminary phyto-profiling (Qualitative and quantitative estimation) for the roots of W. somnifera were carried out according to Farnsworth wherein the consistency was found to be sticky in the high polar solvent extracts and non-sticky in low polar solvent extracts. The yield (% w/w) of the extracts was also analyzed wherein the highest yield was recorded for glacial acetic acid extracts (22.97) and followed by water extract (9.29) (Table 3).

DISCUSSION:
Results of the present study showed that 10/11 extracts tested inhibited the growth of selected bacteria and fungi, indicating broad spectrum bioactive nature of W. somnifera. It indicates that W. somnifera has broad spectrum bioactive nature. Glacial acetic acid and benzene extracts express maximum antimicrobial activities by suppressing the growth of all microbes under investigation. In the present study, most of the extracts were found to be potent inhibitor of tested. Excellent antibacterial and antifungal activities were observed by glacial acetic acid extracts were shown by low MIC and MBC/MFC values. MBC/MFC values were found higher than the MIC values of the extracts against microorganisms tested; indicate the bacteriostatic/ fungistatic effects of the extracts. A. tumefaciens bacteria were the most susceptible organisms.

CONCLUSION:
Extracts under study not only inhibit the bacterial/fungal growth but the ZOI developed, was more or less permanent when compared with the ZOI developed by the standard drug used, as after sometime bacterial/fungal colonies could be easily seen in ZOI developed by standard drugs. In the light of the fact that microorganism are becoming resistant against the drugs in use, present investigation is of great significance, as far as the future drugs are concerned and uses of selected plants by the pharmaceutical industries for preparing plant based antimicrobials drugs.

ACKNOWLEDGEMENT:
Authors are expressing their thanks to UGC for providing the funds for the project under Dr. D. S. Kothari, Post Doctoral Fellowship Scheme.

REFERENCES:
5. Bhattacharya SK, Satyan Ks and Ghosal S. Antioxidant activity of glycowithanolides from Withania somnifera in rat brain frontal